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Text Clustering
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Clustering

• Partition unlabeled examples into disjoint 
subsets of clusters, such that:
– Examples within a cluster are very similar

– Examples in different clusters are very different

• Discover new categories in an unsupervised
manner (no sample category labels provided).
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Hierarchical Clustering

• Build a tree-based hierarchical taxonomy 
(dendrogram) from a set of unlabeled examples.

• Recursive application of a standard clustering 
algorithm can produce a hierarchical clustering.

animal

vertebrate

fish reptile amphib. mammal      worm insect crustacean

invertebrate
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Aglommerative vs. Divisive Clustering

• Aglommerative (bottom-up) methods start 
with each example in its own cluster and 
iteratively combine them to form larger and 
larger clusters.

• Divisive (partitional, top-down) separate all 
examples immediately into clusters.
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Direct Clustering Method

• Direct clustering methods require a 
specification of the number of clusters, k, 
desired.

• A clustering evaluation function assigns a 
real-value quality measure to a clustering.

• The number of clusters can be determined 
automatically by explicitly generating 
clusterings for multiple values of k and 
choosing the best result according to a 
clustering evaluation function.
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Hierarchical Agglomerative Clustering 
(HAC)

• Assumes a similarity function for determining 
the similarity of two instances.

• Starts with all instances in a separate cluster 
and then repeatedly joins the two clusters that 
are most similar until there is only one cluster.

• The history of merging forms a binary tree or 
hierarchy.
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HAC Algorithm

Start with all instances in their own cluster.
Until there is only one cluster:

Among the current clusters, determine the two 
clusters, ci and cj, that are most similar.

Replace ci and cj with a single cluster ci  cj
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Cluster Similarity

• Assume a similarity function that determines the 
similarity of two instances: sim(x,y).
– Cosine similarity of document vectors.

• How to compute similarity of two clusters each 
possibly containing multiple instances?
– Single Link: Similarity of two most similar members.

– Complete Link: Similarity of two least similar members.

– Group Average: Average similarity between members.
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Single Link Agglomerative Clustering

• Use maximum similarity of pairs:

• Can result in “straggly” (long and thin) 
clusters due to chaining effect.
– Appropriate in some domains, such as 

clustering islands. 
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Single Link Example
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Complete Link Agglomerative Clustering

• Use minimum similarity of pairs:

• Makes more “tight,” spherical clusters that 
are typically preferable.
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Complete Link Example
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Computational Complexity

• In the first iteration, all HAC methods need 
to compute similarity of all pairs of n 
individual instances which is O(n2).

• In each of the subsequent n2 merging 
iterations, it must compute the distance 
between the most recently created cluster 
and all other existing clusters.

• In order to maintain an overall O(n2) 
performance, computing similarity to each 
other cluster must be done in constant time.
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Computing Cluster Similarity

• After merging ci and cj, the similarity of the 
resulting cluster to any other cluster, ck, can 
be computed by:
– Single Link:

– Complete Link:
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Group Average Agglomerative Clustering

• Use average similarity across all pairs within the 
merged cluster to measure the similarity of two 
clusters.

• Compromise between single and complete link.

• Averaged across all ordered pairs in the merged 
cluster instead of unordered pairs between the two 
clusters (to encourage tighter final clusters).

 
 


)( :)(

),(
)1(

1
),(

ji jiccx xyccyjiji

ji yxsim
cccc

ccsim
 



17

Computing Group Average Similarity

• Assume cosine similarity and normalized 
vectors with unit length.

• Always maintain sum of vectors in each 
cluster.

• Compute similarity of clusters in constant 
time:





jcx

j xcs



)(

)1||||)(|||(|

|)||(|))()(())()((
),(






jiji

jijiji
ji cccc

cccscscscs
ccsim



18

Non-Hierarchical Clustering

• Typically must provide the number of desired 
clusters, k.

• Randomly choose k instances as seeds, one per 
cluster.  

• Form initial clusters based on these seeds.

• Iterate, repeatedly reallocating instances to 
different clusters to improve the overall clustering.

• Stop when clustering converges or after a fixed 
number of iterations. 
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K-Means

• Assumes instances are real-valued vectors.

• Clusters based on centroids, center of 
gravity, or mean of points in a cluster, c:

• Reassignment of instances to clusters is 
based on distance to the current cluster 
centroids.
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Distance Metrics

• Euclidian distance (L2 norm):

• L1 norm:

• Cosine Similarity (transform to a distance 
by subtracting from 1):
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K-Means Algorithm

Let d be the distance measure between instances.
Select k random instances {s1, s2,… sk} as seeds.
Until clustering converges or other stopping criterion:

For each instance xi:
Assign xi to the cluster cj such that d(xi, sj) is minimal.

(Update the seeds to the centroid of each cluster)
For each cluster cj

sj = (cj) 
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K Means Example
(K=2)

Pick seeds

Reassign clusters

Compute centroids

x
x

Reasssign clusters

x
x xx Compute centroids

Reassign clusters

Converged!
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Time Complexity

• Assume computing distance between two instances is 
O(m) where m is the dimensionality of the vectors.

• Reassigning clusters: O(kn) distance computations, 
or O(knm).

• Computing centroids: Each instance vector gets 
added once to some centroid: O(nm).

• Assume these two steps are each done once for I
iterations:  O(Iknm).

• Linear in all relevant factors, assuming a fixed 
number of iterations, more efficient than O(n2) HAC.
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K-Means Objective

• The objective of k-means is to minimize the 
total sum of the squared distance of every 
point to its corresponding cluster centroid.
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• Finding the global optimum is NP-hard.

• The k-means algorithm is guaranteed to 
converge a local optimum.
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Seed Choice

• Results can vary based on random seed 
selection.

• Some seeds can result in poor convergence 
rate, or convergence to sub-optimal 
clusterings.

• Select good seeds using a heuristic or the 
results of another method.
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Buckshot Algorithm

• Combines HAC and K-Means clustering.
• First randomly take a sample of instances of 

size n
• Run group-average HAC on this sample, 

which takes only O(n) time.
• Use the results of HAC as initial seeds for 

K-means.
• Overall algorithm is O(n) and avoids 

problems of bad seed selection.
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Text Clustering

• HAC and K-Means have been applied to text in a 
straightforward way.

• Typically use normalized, TF/IDF-weighted vectors 
and cosine similarity.

• Optimize computations for sparse vectors.
• Applications:

– During retrieval, add other documents in the same cluster 
as the initial retrieved documents to improve recall.

– Clustering of results of retrieval to present more organized 
results to the user (à la Northernlight folders).

– Automated production of hierarchical taxonomies of 
documents for browsing purposes (à la Yahoo & DMOZ).
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Soft Clustering

• Clustering typically assumes that each instance is 
given a “hard” assignment to exactly one cluster.

• Does not allow uncertainty in class membership or 
for an instance to belong to more than one cluster.

• Soft clustering gives probabilities that an instance 
belongs to each of a set of clusters.

• Each instance is assigned a probability distribution 
across a set of discovered categories (probabilities 
of all categories must sum to 1).
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Expectation Maximumization (EM)

• Probabilistic method for soft clustering.

• Direct method that assumes k clusters:{c1, c2,… ck} 

• Soft version of k-means.

• Assumes a probabilistic model of categories that 
allows computing P(ci | E) for each category, ci, for a 
given example, E.

• For text, typically assume a naïve-Bayes category 
model.
– Parameters  = {P(ci), P(wj | ci): i{1,…k}, j {1,…,|V|}}
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EM Algorithm

• Iterative method for learning probabilistic 
categorization model from unsupervised data.

• Initially assume random assignment of examples to 
categories.

• Learn an initial probabilistic model by estimating 
model parameters  from this randomly labeled data.

• Iterate following two steps until convergence:
– Expectation (E-step): Compute P(ci | E) for each example 

given the current model, and probabilistically re-label the 
examples based on these posterior probability estimates.

– Maximization (M-step): Re-estimate the model 
parameters, , from the probabilistically re-labeled data.
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EM

Unlabeled Examples

+ 

+ 

+ 

+ 

+

Assign random probabilistic labels to unlabeled data
Initialize:
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EM

Prob. 
Learner

+ 

+ 

+ 

+ 

+

Give soft-labeled training data to a probabilistic learner
Initialize:
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EM

Prob. 
Learner

Prob.
Classifier

+ 

+ 

+ 

+ 

+

Produce a probabilistic classifier
Initialize:
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EM

Prob. 
Learner

Prob.
Classifier

Relabel unlabled data using the trained classifier

+ 

+ 

+ 

+ 

+

E Step:
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EM

Prob. 
Learner

+ 

+ 

+ 

+ 

+
Prob.

Classifier

Continue EM iterations until probabilistic labels 
on unlabeled data converge.

Retrain classifier on relabeled data
M step:
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Learning from Probabilistically Labeled Data 

• Instead of training data labeled with “hard” 
category labels, training data is labeled with “soft” 
probabilistic category labels.

• When estimating model parameters  from training 
data, weight counts by the corresponding 
probability of the given category label.

• For example, if P(c1 | E) = 0.8 and P(c2 | E) = 0.2,        
each word wj in E contributes only 0.8 towards the 
counts n1 and n1j, and 0.2 towards the counts n2 and 
n2j .
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Naïve Bayes EM

Randomly assign examples probabilistic category labels.
Use standard naïve-Bayes training to learn a probabilistic model 

with parameters  from the labeled data.
Until convergence or until maximum number of iterations reached:

E-Step: Use the naïve Bayes model  to compute P(ci | E) for
each category and example, and re-label each example 
using these probability values as soft category labels.

M-Step: Use standard naïve-Bayes training to re-estimate the 
parameters  using these new probabilistic category labels.
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Semi-Supervised Learning

• For supervised categorization, generating labeled 
training data is expensive.

• Idea: Use unlabeled data to aid supervised 
categorization.

• Use EM in a semi-supervised mode by training 
EM on both labeled and unlabeled data.
– Train initial probabilistic model on user-labeled subset 

of data instead of randomly labeled unsupervised data. 
– Labels of user-labeled examples are “frozen” and never 

relabeled during EM iterations.
– Labels of unsupervised data are constantly 

probabilistically relabeled by EM.

39

Semi-Supervised EM

Training Examples
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-
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+
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Unlabeled Examples
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Semi-Supervised EM

Training Examples
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Semi-Supervised EM

Training Examples
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Semi-Supervised EM

Training Examples
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-
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+
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Semi-Supervised EM

Training Examples

-
-
+

+
+

Prob. 
Learner

+ 

+ 

+ 

+ 

+
Prob.

Classifier

Continue retraining iterations until probabilistic 
labels on unlabeled data converge.
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Semi-Supervised EM Results

• Experiments on assigning messages from 20 Usenet 
newsgroups their proper newsgroup label.

• With very few labeled examples (2 examples per class), 
semi-supervised EM significantly improved predictive 
accuracy:
– 27%  with 40 labeled messages only.
– 43%  with 40 labeled  + 10,000 unlabeled messages.

• With more labeled examples, semi-supervision can 
actually decrease accuracy, but refinements to standard 
EM can help prevent this.
– Must weight labeled data appropriately more than unlabeled data.

• For semi-supervised EM to work, the “natural clustering of 
data” must be consistent with the desired categories
– Failed when applied to English POS tagging (Merialdo, 1994)
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Semi-Supervised EM Example

• Assume “Catholic” is present in both of the labeled 
documents for soc.religion.christian, but “Baptist” 
occurs in none of the labeled data for this class.

• From labeled data, we learn that “Catholic” is highly 
indicative of the “Christian” category.

• When labeling unsupervised data, we label several 
documents with “Catholic” and “Baptist” correctly 
with the “Christian” category.

• When retraining, we learn that “Baptist” is also 
indicative of a “Christian” document.

• Final learned model is able to correctly assign 
documents containing only “Baptist” to “Christian”.
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Issues in Clustering

• How to evaluate clustering?
– Internal: 

• Tightness and separation of clusters (e.g. k-means 
objective)

• Fit of probabilistic model to data

– External
• Compare to known class labels on benchmark data

• Improving search to converge faster and 
avoid local minima.

• Overlapping clustering.
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Conclusions

• Unsupervised learning induces categories 
from unlabeled data.

• There are a variety of approaches, including:
– HAC

– k-means

– EM

• Semi-supervised learning uses both labeled 
and unlabeled data to improve results.


