
1

1

Text Clustering

2

Clustering

• Partition unlabeled examples into disjoint
subsets of clusters, such that:
– Examples within a cluster are very similar

– Examples in different clusters are very different

• Discover new categories in an unsupervised
manner (no sample category labels provided).

3

.

Clustering Example

.

.
.
.

. .
. ..

.
.

...
.

.

.
.
.

. .
. ..

.
.

...
.

.

2

4

Hierarchical Clustering

• Build a tree-based hierarchical taxonomy
(dendrogram) from a set of unlabeled examples.

• Recursive application of a standard clustering
algorithm can produce a hierarchical clustering.

animal

vertebrate

fish reptile amphib. mammal worm insect crustacean

invertebrate

5

Aglommerative vs. Divisive Clustering

• Aglommerative (bottom-up) methods start
with each example in its own cluster and
iteratively combine them to form larger and
larger clusters.

• Divisive (partitional, top-down) separate all
examples immediately into clusters.

6

Direct Clustering Method

• Direct clustering methods require a
specification of the number of clusters, k,
desired.

• A clustering evaluation function assigns a
real-value quality measure to a clustering.

• The number of clusters can be determined
automatically by explicitly generating
clusterings for multiple values of k and
choosing the best result according to a
clustering evaluation function.

3

7

Hierarchical Agglomerative Clustering
(HAC)

• Assumes a similarity function for determining
the similarity of two instances.

• Starts with all instances in a separate cluster
and then repeatedly joins the two clusters that
are most similar until there is only one cluster.

• The history of merging forms a binary tree or
hierarchy.

8

HAC Algorithm

Start with all instances in their own cluster.
Until there is only one cluster:

Among the current clusters, determine the two
clusters, ci and cj, that are most similar.

Replace ci and cj with a single cluster ci  cj

9

Cluster Similarity

• Assume a similarity function that determines the
similarity of two instances: sim(x,y).
– Cosine similarity of document vectors.

• How to compute similarity of two clusters each
possibly containing multiple instances?
– Single Link: Similarity of two most similar members.

– Complete Link: Similarity of two least similar members.

– Group Average: Average similarity between members.

4

10

Single Link Agglomerative Clustering

• Use maximum similarity of pairs:

• Can result in “straggly” (long and thin)
clusters due to chaining effect.
– Appropriate in some domains, such as

clustering islands.

),(max),(
,

yxsimccsim
ji cycx

ji




11

Single Link Example

12

Complete Link Agglomerative Clustering

• Use minimum similarity of pairs:

• Makes more “tight,” spherical clusters that
are typically preferable.

),(min),(
,

yxsimccsim
ji cycx

ji 


5

13

Complete Link Example

14

Computational Complexity

• In the first iteration, all HAC methods need
to compute similarity of all pairs of n
individual instances which is O(n2).

• In each of the subsequent n2 merging
iterations, it must compute the distance
between the most recently created cluster
and all other existing clusters.

• In order to maintain an overall O(n2)
performance, computing similarity to each
other cluster must be done in constant time.

15

Computing Cluster Similarity

• After merging ci and cj, the similarity of the
resulting cluster to any other cluster, ck, can
be computed by:
– Single Link:

– Complete Link:

)),(),,(max()),((kjkikji ccsimccsimcccsim 

)),(),,(min()),((kjkikji ccsimccsimcccsim 

6

16

Group Average Agglomerative Clustering

• Use average similarity across all pairs within the
merged cluster to measure the similarity of two
clusters.

• Compromise between single and complete link.

• Averaged across all ordered pairs in the merged
cluster instead of unordered pairs between the two
clusters (to encourage tighter final clusters).

 
 


)(:)(

),(
)1(

1
),(

ji jiccx xyccyjiji

ji yxsim
cccc

ccsim
 



17

Computing Group Average Similarity

• Assume cosine similarity and normalized
vectors with unit length.

• Always maintain sum of vectors in each
cluster.

• Compute similarity of clusters in constant
time:





jcx

j xcs



)(

)1||||)(|||(|

|)||(|))()(())()((
),(






jiji

jijiji
ji cccc

cccscscscs
ccsim



18

Non-Hierarchical Clustering

• Typically must provide the number of desired
clusters, k.

• Randomly choose k instances as seeds, one per
cluster.

• Form initial clusters based on these seeds.

• Iterate, repeatedly reallocating instances to
different clusters to improve the overall clustering.

• Stop when clustering converges or after a fixed
number of iterations.

7

19

K-Means

• Assumes instances are real-valued vectors.

• Clusters based on centroids, center of
gravity, or mean of points in a cluster, c:

• Reassignment of instances to clusters is
based on distance to the current cluster
centroids.





cx

x
c 



||

1
(c)μ

20

Distance Metrics

• Euclidian distance (L2 norm):

• L1 norm:

• Cosine Similarity (transform to a distance
by subtracting from 1):

2

1
2)(),(i

m

i
i yxyxL  









m

i
ii yxyxL

1
1),(



yx

yx








1

21

K-Means Algorithm

Let d be the distance measure between instances.
Select k random instances {s1, s2,… sk} as seeds.
Until clustering converges or other stopping criterion:

For each instance xi:
Assign xi to the cluster cj such that d(xi, sj) is minimal.

(Update the seeds to the centroid of each cluster)
For each cluster cj

sj = (cj)

8

22

K Means Example
(K=2)

Pick seeds

Reassign clusters

Compute centroids

x
x

Reasssign clusters

x
x xx Compute centroids

Reassign clusters

Converged!

23

Time Complexity

• Assume computing distance between two instances is
O(m) where m is the dimensionality of the vectors.

• Reassigning clusters: O(kn) distance computations,
or O(knm).

• Computing centroids: Each instance vector gets
added once to some centroid: O(nm).

• Assume these two steps are each done once for I
iterations: O(Iknm).

• Linear in all relevant factors, assuming a fixed
number of iterations, more efficient than O(n2) HAC.

24

K-Means Objective

• The objective of k-means is to minimize the
total sum of the squared distance of every
point to its corresponding cluster centroid.

2

1
||||  


K

l Xx li
li

x 

• Finding the global optimum is NP-hard.

• The k-means algorithm is guaranteed to
converge a local optimum.

9

25

Seed Choice

• Results can vary based on random seed
selection.

• Some seeds can result in poor convergence
rate, or convergence to sub-optimal
clusterings.

• Select good seeds using a heuristic or the
results of another method.

26

Buckshot Algorithm

• Combines HAC and K-Means clustering.
• First randomly take a sample of instances of

size n
• Run group-average HAC on this sample,

which takes only O(n) time.
• Use the results of HAC as initial seeds for

K-means.
• Overall algorithm is O(n) and avoids

problems of bad seed selection.

27

Text Clustering

• HAC and K-Means have been applied to text in a
straightforward way.

• Typically use normalized, TF/IDF-weighted vectors
and cosine similarity.

• Optimize computations for sparse vectors.
• Applications:

– During retrieval, add other documents in the same cluster
as the initial retrieved documents to improve recall.

– Clustering of results of retrieval to present more organized
results to the user (à la Northernlight folders).

– Automated production of hierarchical taxonomies of
documents for browsing purposes (à la Yahoo & DMOZ).

10

28

Soft Clustering

• Clustering typically assumes that each instance is
given a “hard” assignment to exactly one cluster.

• Does not allow uncertainty in class membership or
for an instance to belong to more than one cluster.

• Soft clustering gives probabilities that an instance
belongs to each of a set of clusters.

• Each instance is assigned a probability distribution
across a set of discovered categories (probabilities
of all categories must sum to 1).

29

Expectation Maximumization (EM)

• Probabilistic method for soft clustering.

• Direct method that assumes k clusters:{c1, c2,… ck}

• Soft version of k-means.

• Assumes a probabilistic model of categories that
allows computing P(ci | E) for each category, ci, for a
given example, E.

• For text, typically assume a naïve-Bayes category
model.
– Parameters  = {P(ci), P(wj | ci): i{1,…k}, j {1,…,|V|}}

30

EM Algorithm

• Iterative method for learning probabilistic
categorization model from unsupervised data.

• Initially assume random assignment of examples to
categories.

• Learn an initial probabilistic model by estimating
model parameters  from this randomly labeled data.

• Iterate following two steps until convergence:
– Expectation (E-step): Compute P(ci | E) for each example

given the current model, and probabilistically re-label the
examples based on these posterior probability estimates.

– Maximization (M-step): Re-estimate the model
parameters, , from the probabilistically re-labeled data.

11

31

EM

Unlabeled Examples

+ 

+ 

+ 

+ 

+

Assign random probabilistic labels to unlabeled data
Initialize:

32

EM

Prob.
Learner

+ 

+ 

+ 

+ 

+

Give soft-labeled training data to a probabilistic learner
Initialize:

33

EM

Prob.
Learner

Prob.
Classifier

+ 

+ 

+ 

+ 

+

Produce a probabilistic classifier
Initialize:

12

34

EM

Prob.
Learner

Prob.
Classifier

Relabel unlabled data using the trained classifier

+ 

+ 

+ 

+ 

+

E Step:

35

EM

Prob.
Learner

+ 

+ 

+ 

+ 

+
Prob.

Classifier

Continue EM iterations until probabilistic labels
on unlabeled data converge.

Retrain classifier on relabeled data
M step:

36

Learning from Probabilistically Labeled Data

• Instead of training data labeled with “hard”
category labels, training data is labeled with “soft”
probabilistic category labels.

• When estimating model parameters  from training
data, weight counts by the corresponding
probability of the given category label.

• For example, if P(c1 | E) = 0.8 and P(c2 | E) = 0.2,
each word wj in E contributes only 0.8 towards the
counts n1 and n1j, and 0.2 towards the counts n2 and
n2j .

13

37

Naïve Bayes EM

Randomly assign examples probabilistic category labels.
Use standard naïve-Bayes training to learn a probabilistic model

with parameters  from the labeled data.
Until convergence or until maximum number of iterations reached:

E-Step: Use the naïve Bayes model  to compute P(ci | E) for
each category and example, and re-label each example
using these probability values as soft category labels.

M-Step: Use standard naïve-Bayes training to re-estimate the
parameters  using these new probabilistic category labels.

38

Semi-Supervised Learning

• For supervised categorization, generating labeled
training data is expensive.

• Idea: Use unlabeled data to aid supervised
categorization.

• Use EM in a semi-supervised mode by training
EM on both labeled and unlabeled data.
– Train initial probabilistic model on user-labeled subset

of data instead of randomly labeled unsupervised data.
– Labels of user-labeled examples are “frozen” and never

relabeled during EM iterations.
– Labels of unsupervised data are constantly

probabilistically relabeled by EM.

39

Semi-Supervised EM

Training Examples

-
-
+

+
+

Unlabeled Examples

Prob.
Learner

Prob.
Classifier

+ 

+ 

+ 

+ 

+

14

40

Semi-Supervised EM

Training Examples

-
-
+

+
+

Prob.
Learner

+ 

+ 

+ 

+ 

+
Prob.

Classifier

41

Semi-Supervised EM

Training Examples

-
-
+

+
+

Prob.
Learner

+ 

+ 

+ 

+ 

+

Prob.
Classifier

42

Semi-Supervised EM

Training Examples

-
-
+

+
+

Unlabeled Examples

Prob.
Learner

Prob.
Classifier

+ 

+ 

+ 

+ 

+

15

43

Semi-Supervised EM

Training Examples

-
-
+

+
+

Prob.
Learner

+ 

+ 

+ 

+ 

+
Prob.

Classifier

Continue retraining iterations until probabilistic
labels on unlabeled data converge.

44

Semi-Supervised EM Results

• Experiments on assigning messages from 20 Usenet
newsgroups their proper newsgroup label.

• With very few labeled examples (2 examples per class),
semi-supervised EM significantly improved predictive
accuracy:
– 27% with 40 labeled messages only.
– 43% with 40 labeled + 10,000 unlabeled messages.

• With more labeled examples, semi-supervision can
actually decrease accuracy, but refinements to standard
EM can help prevent this.
– Must weight labeled data appropriately more than unlabeled data.

• For semi-supervised EM to work, the “natural clustering of
data” must be consistent with the desired categories
– Failed when applied to English POS tagging (Merialdo, 1994)

45

Semi-Supervised EM Example

• Assume “Catholic” is present in both of the labeled
documents for soc.religion.christian, but “Baptist”
occurs in none of the labeled data for this class.

• From labeled data, we learn that “Catholic” is highly
indicative of the “Christian” category.

• When labeling unsupervised data, we label several
documents with “Catholic” and “Baptist” correctly
with the “Christian” category.

• When retraining, we learn that “Baptist” is also
indicative of a “Christian” document.

• Final learned model is able to correctly assign
documents containing only “Baptist” to “Christian”.

16

46

Issues in Clustering

• How to evaluate clustering?
– Internal:

• Tightness and separation of clusters (e.g. k-means
objective)

• Fit of probabilistic model to data

– External
• Compare to known class labels on benchmark data

• Improving search to converge faster and
avoid local minima.

• Overlapping clustering.

47

Conclusions

• Unsupervised learning induces categories
from unlabeled data.

• There are a variety of approaches, including:
– HAC

– k-means

– EM

• Semi-supervised learning uses both labeled
and unlabeled data to improve results.

